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The film (I l ford Industr ial  G) was assumed to 
contain 1.45 mg cm -2 of  silver bromide and 25 mg 
cm -2 of  a base (40%C,  10%N,  4 0 % 0  and 10%H)  
(Morimoto  & Uyeda,  1963). 
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Abstract 

A method is presented of  merging experimental  
diffraction data  measured  at different contrasts and 
structure factors calculated with models defined (and 
refined) at some of  these contrasts (or at any other) 
in order  to calculate an optimal density map  at any 
contrast.  It is based on a probabilistic approach  which 
uses a joint  probabil i ty distribution, for each [ h, k, l], 
of  the measured  intensities and the calculated struc- 
ture factors. 

1. Introduction 

The technique of  low-resolution single-crystal diffrac- 
tion with contrast  variat ion has been appl ied in 
several protein-structure determinations.  It is 
especially useful in cases where,  for instance, a part  
of  the molecule is disordered in the crystal, like the 

* On leave in 1987 at LURE, BStiment 209 D, Centre Univer- 
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R N A  in viruses (Bentley, Lewit-Bentley, Liljas, 
Skoglund,  Roth & Unge, 1987, or the detergent  in 
membrane-pro te in  crystals (Zulauf,  Timmins & 
Garavi to ,  1986). It has also been used to initiate the 
structural study of  systems where no i somorphous  
derivative is yet available (Bentley, Lewit-Bentley, 
Finch, Podjarny & Roth, 1984; Zulauf,  Timmins & 
Garavi to ,  1986). The technique consists of  the collec- 
tion of  several diffraction data  sets to a given reso- 
lution with crystals of the same molecule soaked in 
solvents with different scattering-length density. For 
the case of  neutrons,  the scattering-length density of  
the solvent is usually modified by changing its con- 
centration of  D 2 0 / H 2 0 .  For  X-rays,  the scattering- 
length density can be modified by changing some salt 
concentrat ion,  for instance (Bragg & Perutz, 1952). 

Often, in using this technique,  one has to solve the 
problem of  interpolat ing or extrapolat ing structure 
factors from one or a few contrasts for which model  
densities have been determined to another  contrast  
for which the density has to be determined,  using the 

O 1987 International Union of Crystallography 
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structure-factor relationship between contrasts 
characteristic of linear contrast variation. This is one 
application of the calculations presented here. From 
another point of view, these calculations allow the 
incorporation of the contrast-variation phase 
relationships as a constraint in density-map 
refinements starting from density or model 
refinements made with intensities alone. Finally, the 
method also allows one to make use of partial knowl- 
edge of a structure to determine the whole structure, 
a situation which is rather common in the contrast- 
variation technique, where a model for part of the 
molecule, valid at the contrast where the rest of the 
molecule is matched out, represents a known part of 
the structure at any other contrast if one takes into 
account the change in contrast conditions. 

The originality of the method compared with 
similar calculations is that it includes in a unique 
probability distribution function (a) the joint proba- 
bility distribution function of the measured data, as 
it results from the statistics of the background cor- 
rected intensities, the application of the constraint of 
linear dependence of the structure factors with respect 
to contrast and the relative scaling of the intensities 
measured in different contrasts, and (b) the probabil- 
ity distribution functions of the Fcalc'S of the models. 

2. Best density map 

Following Blow & Crick (1959) and Sage & Melsa 
(1971), we consider as best density map the map 
which minimizes the errors in the calculated density 
map with respect to the true map for any contrast c 
at any point r of the lattice cell. This error can be 
defined as 

R(r, c)=~ C[~(r, c)-p(r, c)]P({F}/{I}, {F¢}) d{V}. 
(1) 

Here C[~(r,  c ) - p ( r ,  c)] is an error cost function of 
the difference between the true density p(r, c) and 
the density t;(r, c) calculated from the measured data 
and the models, these densities being given respec- 
tively by 

p(r ,c)=(1/V)  ~ F(h,k,l,c) exp(-i27rH.r),  
h,k,l 

(2) 

where H is the reciprocal-lattice vector with com- 
ponents [h, k, l] and V is the volume of the unit cell, 
and 

~(r ,c)=(1/V)  ~, F(h,k,l,c) exp(-i27rH.r),  
h,k,l 

(3) 

where ~'(h, k, l, c) is the best estimate of F(h, k, l, c) 
(i.e. the estimate obtained by minimization of R with 
respect to t~). 

The function P({F}/{I}, {F~}) is the a posteriori 
probability density function of the structure factors 
F(h, k, l, c) at contrast c. It is the conditional joint 
probability density function of these F's (ensemble 
{F}) with the following factors taken into account: 
(1) the result of the measurement of the intensities 
I(h, k, 1, ci) (ensemble {I}) at different reciprocal- 
lattice points h, k, I and contrasts ci, and (2) the values 
of the calculated structure factors Fcj(h,k, l) at 
different contrasts cj (ensemble {F~}) obtained from 
model fittings and map refinements at these contrasts. 

If one considers as cost function the squared 
difference [/~(r, c ) - p ( r ,  c)] 2, one obtains the follow- 
ing best estimate of F(h, k, l, c): 

F(h, k, l, c)= ~ F(h, k, l, c)P({F}/{I}, {F~}) d{F}, 
(4) 

that is, 

F(h, k, l, c ) =  ~ F(h, k, l, c) 

x p[F(h, k, l, c)/{I}, {F~}] 0F(h, k, l, c), 

(5) 
where p[F(h, k, l, c)/{I}, {Fc}] is the marginal proba- 
bility density of P({F}/{I}, {F~}) with respect to the 
random variable F(h, k, l, c). This type of best density 
map (least-squares type) was first proposed by Blow 
& Crick (1959). Another definition of the cost function 
C leads to a value of ~ given by~ a Fourier series 
identical to (3), using for each F the value which 
maximizes the function p(F/{I}, {F,}); this defines 
the maximum a posteriori probability best map (see 
Sage & Melsa, 1971). As already discussed by Blow 
& Crick (1959), this approach may raise some difficul- 
ties if the probability distribution has more than one 
maximum; in particular, if it has two maxima of the 
same height. 

3. Marginal a posteriori  probability density functions 

The main approximation we make in deriving 
these functions is to neglect the correlations 
existing between structure factors from different 
h, k, l's. That is to say we consider the 
function p[F(h, k, l, c)/{I}, {Fc}] as a function 
pF(h,k,l, c)/[ I], [Fc]), where [I]  and [F~] are the 
subsets of {I} and {Fc} corresponding to the single 
reciprocal-lattice point h, k, 1 under consideration 
(for instance, [ I ]  is the ensemble of intensities 
measured at that h, k, I in the different contrasts). We 
thus neglect the probabilities of multiplet phase 
relationships or other causes of correlation. 

The structure factor F(h, k, l, c) is actually a func- 
tion of the two partial structure factors Fo and Fd 
according to the relation (Worcester & Franks, 1976) 

F(h,k,l ,c)=Fo(h,k,l)+cFa(h,k,l) .  (6) 

Fo and Fa are the relevant random complex variables 
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of the problem. Then, from Bayes' theorem, 

p(Fo, F,,/[ I], [F~]) = p'([ 1], [F~]/Fo, Fd)p,,(Fo, Fd), 
(7) 

where p' is the joint conditional probability density 
function of the measured intensities [ I]  and the calcu- 
lated structure factors [Fc], if one knows the values 
of F0 and Fd for the given h, k, l; p~(Fo, Fd) is the a 
priori probability density of these two structure fac- 
tors Fo and Fd. The conditional probability density 
function of the calculated structure factors [F~] which 
has to be introduced here is the probability of having 
'found' [F~] if one knows Fo and Fd. "This function 
can be given some reality by looking for a function 
which measures the degree of accuracy of a given F~ 
with respect to its true value F, given by (6), that is 
based on a statistical model for the errors. 

We are going to make the following additional 
assumptions: 

(1) the probability density functions of the F~j for 
the different models are independent; 

(2) for a given model (i.e. a given contrast) the 
distribution of Fcj(h, k, l) is independent of the proba- 
bility distribution of the intensities [I]  measured at 
this h, k, l in all contrasts. 

The first assumption is justified because the 
different models are supposed to be fitted and refined 
independently on independently measured data sets. 
The second may be justified by the fact that although 
each Fcj is a function of the measured intensities in 
the given contrast via the model refinement, this 
relation is very complex, so that the errors in the 
measured intensity and the errors in the Fcj for the 
same given h, k, l are random and uncorrelated. 

With these assumptions one finally obtains 

p(Fo, Fa/[I],[F~]) 

= P,([ I ] /Fo,  Fd )Pa (Fo, Fd ) 1-I pF(FcJFo, Fd ). 
J 

(8) 

From here on, we shall consider in the equations 
only intensities and structure factors corresponding 
to the same reciprocal-lattice point; therefore, the 
reference to h, k, l will be omitted in the notation. 

4. Joint probability density function of the measured 
intensities 

Correlations in the statistical distributions of the 
intensities measured at the same h, k, l in different 
contrasts result from the relative scaling of these 
different data sets based on the parabolic variation 
of the intensities, and from the least-squares fit of the 
measured intensities to (6) for each h, k, l, made in 
order to determine the values of the parameters Fo, Fd 
and the cosine of their phase difference A~p (Roth, 
Lewit-Bentley & Bentley, 1984). 

In terms of intensities, (6) can be rewitten as 

I = Io+ Cll + c212 (9) 
with 

Io =F2 ;  11=2FoFd cos (A~p); 12-- F 2. (10) 

The variance-covariance matrix B of these three 
parameters after least-squares determination is 
obtained from the variance-covariance matrix of the 
measured reflections [ I ]  after relative scaling and 
from the variance-covariance matrix of the scaling 
factors, as shown by Roth, Lewit-Bentley & Bentley 
(1984). The scaling can be performed either by use 
of the parabolic variation with respect to c of the 
intensity of each reflection (Roth, Lewit-Bentley & 
Bentley, 1984) or by absolute scaling of the sums of 
the intensities for each contrast (Roth, 1986). If one 
assumes that the scaled intensities are Gaussian vari- 
ables, the same is then true for Io, 11 and 12 obtained 
by least squares, and the unnormalized conditional 
probability density is 

P~([I]/Fo, F d ) = e x p ( - A I ' B - 1 A I / 2 ) ,  (11) 

where AIr is the three-dimensional vector 

Al '= [ io -  F2, Ii-2FoFd COS (Ae), I~- F2d]. (12) 

Here &, il and i2 are the least-squares estimates of 
Io, 11 and 12, and AIt is the transpose of AI. This 
joint probability density function of the measured 
intensities replaces in the present approach the proba- 
bility density functions based on lack of closure used 
in the case of isomorphous replacement (Blow & 
Crick, 1959; Hendrickson & Lattman, 1970). 

5. A priori probability density function of Fo and Fa 

In our problem nothing is known a priori concerning 
the moduli of F0 and Fd. For a non-centrosymmetric 
reflection the phase eo of Fo is also undetermined a 
priori. The phase of F d is related to ~o by 

~( Fd) = ~Po-- eA~p (13) 

where A¢ is the absolute phase difference between 
Fo and Fd restricted to the range [0, 7r] whose value 
is also undetermined a priori, and e is a variable equal 
to 4-1 or -1  with probability .q and 1 - q  respectively 
(a priori q = l ) .  The a priori probability density 
pa(Fo, Fd) iS thus just the probability distribution of 
this Bernoulli random variable e. 

For a centrosymmetric reflection, the phase of a 
given h, k, l can have only two values differing by 7r 
(i.e. A~p is equal to 0 or 1r). The a priori probability 
density pa(Fo, Fd) is therefore given by 

P~ (~Po, A~o)= [8(~po-/3) + 8 ( ~ o - f l  + 7r)] 

x [8(A¢,)  + 8 (Ae  - ,rr)]/4, (14) 

where/3 depends on h, k, 1 and is fixed by the space 
group. 
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6. Conditional probability density function of the 
Fcalc~S 

The conditional probability density function of a 
given Fc with respect to its true value F given by (6) 
is obtained, as already mentioned, on the basis of a 
stochastic model for the errors of the F¢ density map 
with respect to the true density map. Rather than 
going through the process of model fitting to define 
that error distribution, we use a method formally very 
similar to that used in predicting structure factors for 
partially known structures [see, for instance, Sire 
(1959) and Jauch (1983)]. The model is based on a 
partition of the lattice cell into small identical con- 
tiguous parallelepipeds (called cubes in the rest of 
the text for the sake of brevity) with edges parallel 
to the crystal axes and with an edge length equal to 
a fraction of the resolution at which the density map 
is calculated. The difference between the average F~ 
density and the average true density in each of these 
cubes is treated as a random variable with different 
values from place to place. It is assumed that it has 
a zero mean and a variance vj for the contrast j. In 
this model the value of F~ is deduced from the value 
of F by adding to F the amplitudes scattered by all 
these elementary error densities. If one assumes that 
these elementary errors are distributed at random 
through the lattice, the distribution of F¢ in the com- 
plex plane is given as a function of F by application 
of the central-limit theorem as 

pF(F~j/Fo, Fd ) = exp [-IF Cj - Fo-  cjFu[2/(pNvj)], 
(15) 

where N is the number of these cubes per unit cell 
in the lattice, vj is the variance of the amplitude 
scattered by these cubes, the scattering length of each 
cube being equal to the product of the density 
difference (density error) in the cube and the volume 
of the cube, and p is equal to I or 2 for non-centrosym- 
metric or centrosymmetric reflections respectively (de 
Rango, Tsoucaris & Zelwer, 1974). Because of the 
small size of these cubes with respect to the resolution, 
this variance vj is proportional to vj: 

vj = (A 2 + B2)vj/N' (16) 

where A and B are the trigonometric functions of h, 
k, l, x, y, z, given for every space group by International 
Tables for X-ray Crystallography (1952) for the calcu- 
lation of F(h, k, I). The average (. . .)  is taken over 
x, y, z in the unit cell and N '  is the number of asym- 
metric units per unit cell. 

To determine the value of vj for a given Fcalc map 
we shall equate its value to the average of the square 
of the difference between this calculated map and 
the true map. In a first approximation one can use 
the average of the square of the difference map, 

Fcalc -- (Fobs, ~calc) : 

v j = ( v / V )  2 ~ [Fcj-Fobs(Cj)] 2 (17) 
H(# O) 

with 

Fobs(C)=(Io+CIl+C212) U2, (18) 

v being the volume of one of the cubes. Then,^ by 
iteration, the square of the difference^ map^ F~j- Fo-  
CjFd can be used instead, where Fo and Fd are the 
best estimates of Fo and Fd and are taken from the 
preceding iteration. As can be seen in applications, 
however, this iteration is not very useful. 

The value of N is given by 

N =  V/v  with v = ( d / m )  a, (19) 

where d is the minimum d spacing considered and 
m is an integer larger than 1. 

The variance of F~ resulting from this model of 
density error is independent of h, k, I. It is propor- 
tional to the average of the squared difference I Fcalc- 
Fobs] 2 over all h, k, l's for the contrast under consider- 
ation. Our method is analogous to some extent to 
that proposed for a similar case by Bricogne (1976), 
which consists of the use of the probability distribu- 
tion of Sim (1959) based on the identification of the 
imperfectly known Fca~¢'s with the structure factors 
of a partially known structure and proposes to use 
as an empirical variance the average of the absolute 
intensity differences ]I~al¢--/obs[, an average calculated 
as a function of the resolution in different resolution 
shells. With neutrons the atomic form factor is 
independent of the resolution and therefore there is 
no need to consider a resolution-dependent average. 
In the present method the variance depends on the 
overall resolution, d. 

Stochastic models 

In some cases, a model can by itself allow for an 
Fc distribution because of the stochastic nature of 
some of the parameters, like the position of the totality 
or of a part of the molecule, distributed around a 
mean position or distributed at random through the 
lattice [see, respectively, Luzzati (1955), Jauch (1983), 
Giacovazzo (1983)]. Relation (1) then reads 

R(r, c )=~ C[fi(r, c ) - p ( r ,  c)] 

x P({F}/{I}, {Fc})pc({F~}) d{F} d{Fc}, (20) 

where p~({F~}) is the joint probability density function 
of the F~'s of the model. By repeating the derivation 
and assuming independent Gaussian distributions for 
the Fc's of these statistical models, one finds finally 
an expression like (15) where Fcj is now the expecta- 
tion value corresponding to the Gaussian distribution 
of Fc for the model at contrast c i. The new variance 
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wj of the distribution of Fcj, (15), is now 

w~ = Nvj + m~, (21) 

where mj is the variance of the distribution of Ft. 
An example of such a stochastic model is given in 

§8. 

7. Integration 

By combining everything, one obtains the joint proba- 
bility density functions of Fo and Fa which follow. 

For a non-centrosymmetric reflection there is a 
double determination. For e > 0, 

I" 

= q exp [ -{AI tB- IAI  
L 

+ ~., IF¢~ - F(cj)121 wj}/2], 
J 

(22) 

and for e <0 ,  the same expression holds with q 
replaced by ( 1 - q ) .  The summation over j concerns 
all contrasts cj for which a model exists. The value 
of F(c) is given in both cases by 

F(c)= Focos(¢o)+cFa cos ( ¢ o -  eA¢) 

+ i[ Fo sin (¢o) + CFd sin ( ¢o - e'4¢ ) ]. (23) 

The calculation of the least-squares best estimate 
[(5)] requires the calculation of the first moments 

of the probability density function (22). One has to 
sum the contributions of the two determinations. The 
integration of the function (22) itself (i.e. of the sum 
of the two determinations) must also be performed 
because the expressions for the probability densities 
given in this paper have not been normalized to 1. 

The integration variables for a non-centrosym- 
metric reflection are Fo, ¢o, Fa and '4¢. The integra- 
tion with respect to ¢o can be performed analytically. 
The result involves the zero- and first-order modified 
Bessel functions of the first kind, Io(s) and l~(s), of 
the variable s defined by 

Sm. ( 8 2  "]- ~ s,'~2") 1/2 (24) 

[see relations 3.937.1 and 3.937.2 in Gradshteyn & 
Ryzhik (1965)], where 

S~ = Y~ [ FoFcj cos (¢cj) + cjFaF¢j cos (¢¢j + e'4¢)]/wj 

i (25) 

S~ = ~ [ foF~; sin (¢~j) + c;FaF¢j sin (¢cj + ea¢) ] ]  wj, 

J (26) 

with ¢¢j equal to the phase of Fcj. With the further 
definitions 

2 2 So=E[F~j+2 F2+2cyoFdCOS('4¢)+cjFa]/Wj (27) 
J 

and 

1/K = J Io(s) exp [-(So + z~l'B-'z~l)/2ldFo dFa d,4¢, 

(28) 

one obtains 

~"o = K ~ Fo{q[Sc(e=+l)+ iSs(e = +1)] 

+ ( 1 -  q)[S¢(E = - 1 ) +  iSs(e = -1)]} 

x [ I , (s) /s]  exp [ - (So + aI 'B-~AI) /2]  

x dFo dFd d'4¢ (29) 

~'a = K ~ Fa{q[Sc(e = +1) cos ('4¢) 

+ Ss(e = +1) sin (A¢) 

+ iSs(e = +1) cos (A¢) 

- iS~(e =+1)  sin (A¢)] 

+(1-q ) [Sc (e  = -1 )  cos (A¢) 

- Ss(e = -1)  sin (A¢) 

+ iSs(e = - 1 )  cos (,4¢) 

+ iSc(e = -1)  sin (,4¢)]} 

× [ I ,(s)l  s] exp [ - (So + a l '  B- '  AI)/2] 

x dFo dFa dA¢. (30) 

The other three integrations have to be carried out 
numerically. In our application program (PROPHA), 
this numerical integration is not performed on Fo, Fa 
and '4¢ but actually on the three components of the 
vector AI [defined by (12)], calculated in the eigen- 
vector system of axes of B and integrated between 
-3b  and +3b along each of these axes, b being the 
eigenvalue of B for this axis, with the restriction 
12 < lo12. The same method of integration is used to 
calculate the variance of F (i.e. the variance-covari- 
ance matrix of its real and imaginary parts). The 
calculation involves the second moments of the 
density function with respect to Fo and Fd and there- 
fore the second-order modified Bessel function of the 
first kind, I2(s). 

In the case of centrosymmetric reflections, there 
are also two determinations, corresponding to ¢o =/3 
and ¢o--/3 + 7r [see (14)]. The numerical integration 
is made directly on Io and /2 [(12)], and the integra- 
tion over 11 degenerates into the sum of only two 
terms corresponding to I~=+(IoI2) 1/2 and 11 = 
--(loi2) 1/2 [i.e. A¢ =0  and A¢ = rr in (14)]. 

The calculation of the maximum a posteriori proba- 
bility estimate of F for non-centrosymmetric reflec- 
tions requires the solution of the system of four 
equations 

d [AI 'B- 'Z~I+~  (IF~;-F(c,)I2/W,)]/du=O, (31' 

where u = Fo, ¢o, Fa or "4¢, for both determinations 
of F(cj) (i.e. for e = +1 and e = -1) ;  the 'best' solution 
is the one which corresponds to the highest value of 
p(Fo,~a/[t],[Fc]). 

For centrosymmetric reflections one has only to 
consider two variables, Fo and Fa, and thus a system 
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of only two equations. It has to be solved in the four 
possible cases: 

(1) ~po=fl, A~o=0; (2) q~o=/3, A~o=Tr; 

(3) ~p0=/3+Tr, A ~ = 0 ;  (4) ~0=/3+Tr, A~=Tr. 

The probability of each case has to be evaluated and 
the case with highest probability selected. 

8. Centroid maps 

When only one model is known, corresponding to a 
certain contrast cl, the only way to derive a map in 
another contrast c is to calculate the centroid map. 
In the usual method, one uses as structure factor for 
the contrast c the projection of F(c) on F~1, i.e. 

F(c) = F(c) cos (A~p~)Fcl/F~I (32) 

with 

cos (A~c) = [ F(c,)  2 + F ( c ) 2 - ( c  - c,) 2 F 2 ] 

x [2F(c , )F(c) ]  -1 (33) 

and F(c) given by (18). 
It can be shown that by applying the relations (29) 

and (30) to that case where the sum overj  is restricted 
to just one term, j = 1, one obtains a kind of weighted 
average of (32), 

F(c) = K j F(c)l l (s)  exp [ - (So+  AI 'B - 'A I ) /2 ]  

x dFo dFa damp. (34) 

Because the Bessel functions 11 and Io satisfy II(s) < 
Io(s) for any s >  0, the modulus of F(c) is smaller 
than the modulus of F(c); this is especially true if 
the reflection is weak, the overall agreement for the 
F~I map is bad, or the measured value Fobs(C) [(18)] 
is not very accurate. 

This situation may be improved somewhat by mak- 
ing use of the orthogonaIity of  some contrasts. By 
orthogonality we mean the following: let us consider 
a macromolecule made of two moieties A and B, like 
the core protein and nucleic acid in a simple virus. 
If pA(r) and Ps (r) are the densities of each component 
in the lattice, then the relation 

pA(r)ps(r) =0 (35) 

holds everywhere in the lattice and the corresponding 
structure factors are related by 

E FA(H' )FB(H-  H') =0  (36) 
H' 

for any H. This relation is also valid if one or both 
densities are model densities, provided that the 
orthogonality is preserved. The use of this relation 
can be applied only to the case where the contrast cl 
for which one has defined a model is the contrast ca 
where the density A is matched out by the solvent, 
and for the evaluation of the density A corresponding 
to the contrast CA where B is matched out. But this 

could be generalized to other cases (see Bentley, 
Finch, Lewit-Bentley & Roth, 1984). 

Then one can write 

F(H,c)=-[1/F(O,c,)]  E 
H ' ( # H )  

F(H', c)F(H- H', Cl), 

(37) 

because F(H, c) and F(H, cl) are proportional respec- 
tively to FA(H) and F~(H). The values of F(0, c) and 
F(0, cl) which have to be considered here are those 
corresponding to the scattering-density difference 
with respect to the solvent. 

One can use (37) in several ways. The simplest is 
probably to consider it as a particular way of defining 
a model at contrast c with respect to a model at 
contrast c~ and to use it as a second model (j  = 2) in 
(29) and (30). Following Makowski (1986), one could 
try then to use (37) in an interative way and apply 
the central-limit theorem to the sum on the right-hand 
side of (37) to calculate the variance of F(H, c) (left- 
hand side). This method is, however, not adequate 
in the present case. The reason is that orthogonality 
of densities does not apply to approximate density 
maps (even in ideal matching-out conditions and after 
subtraction of the solvent) because the scattering- 
density errors are spread all over the unit cell for both 
densities, i.e. 

p~A(r)/~B(r) # 0. (38) 

Relation (37) thus does not apply rigorously to 
approximate structure factors and, in particular, not 
to the model structure factors Fcj characterized by 
the statistical distribution of errors defined in this 
paper. If one nevertheless defines a model at contrast 
c (with j = 2) by 

FcE(H)=-[1/F~I(0)]  Y~ FcE(H')F~I(H-H'),  (39) 
H'(#H) 

the statistics of Fc2 will depend not only on the statis- 
tics of Fcl but also on errors due to the lack of 
complete orthogonality of the density errors just 
described, to series-truncation effects or to the use of 
centroid phases as starting phases, and it will be sound 
to apply to it the method of random-density error 
distribution based on mean squares of the difference 
map [in an iterative manner starting with the centroid 
phases for the Fc2'S on the right-hand side of (39)]. 

Another possibility for improving centroid maps, 
when an envelope of the missing part of the molecule 
is known, is to use Wilson's (1949) random model 
restrained to this envelope. By envelope we mean any 
part of the lattice cell where the  missing part of the 
molecule is likely to be found. If we divide this 
missing part into N small identical pieces (with 
respect to the resolution), each with a scattering 
length b (defined with respect to the solvent) and 
distributed at random inside the envelope, the proba- 
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bility density function pc(F~) can be derived as 

pc(F~) = exp (-IF¢(H) - ( N b / f V ) F s ( n ) l  2 

x {p_Nb2[ 1 - f i s ( n ) ] } - l ) ,  (40) 

where Fs(H) is the structure factor of the envelope 
[with Fs (0)=fV,  f being the ratio of the volume of 
the envelope to the volume V of the lattice cell] and 
is(H) is equal to Fs (H)2/Fs(0) 2. The scattering-density 
factor N b / f V  represents the contrast of the missing 
part of the molecule 'diluted' over the volume of the 
envelope. 

9. Application and discussion 

This calculation has been developed as a Fortran 
program called P R O P H A  available from the author. 
It has given very satisfactory results up to now. The 
effectiveness of the use of the orthogonality of 
densities or the use of an envelope-restrained random 
model for improving centroid maps has not been 
tested. Nevertheless, before the present joint proba- 
bility approach was developed, density orthogonality 
[(36)] was tested on non-stochastic models as a tool 
for predicting the sign e of the phase difference A~, 
and the results appeared to be rather good except for 
weak reflections. Application programs of relation 
(36) exist for space groups C2, P2~2~21 and I432. 

Partially known structures 

A very important application is the case where part 
of the investigated structure is already known. This 
concerns, for instance, partly disordered structures, 
like those mentioned in the Introduction, where the 
structure of the ordered part has been determined by 
X-rays. 

The method was thus applied to the refinement of 
the STNV (satellite tobacco necrosis virus) (Bentley, 
Lewit-Bentley, Liljas, Skoglund, Roth & Unge, 1987) 
and the TBSV (tomato bushy stunt virus) structures 
(Wild, Timmins & Witz, private communication), 
with neutron low-resolution diffraction data and with 
X-ray phases as starting point. In these cases, the 
method was applied only at the end of a refinement 
procedure which consisted mainly of extensive 
icosahedral symmetry averaging in different contrasts. 

It appeared more recently that the most straight- 
forward and efficient way of using this method is to 
calculate in two or more different contrasts the partial 
structure factors corresponding to the known part of 
the structure, using for each amino-acid residue its 
known position in the lattice and its proper contrast 
with respect to the solvent, and to incorporate these 
partial structure factors as Fca~c's at the different con- 
trasts (i.e. as Fc;'s) in the equations. This method was 
first applied to the case of the determination of the 
structure of the detergent in a membrane-protein 
crystal and proved to be very successful (publication 

in preparation with H. Michel, H. Deisenhofer, R. 
Huber and A. Lewit-Bentley). 

Scale factors 

Normally the calculation presented here should 
include, to be complete or fully consistent, the 
refinement of the scale factors Fca~c versus Fobs for the 
different models. In fact, in the present approach, the 
Fobs'S cannot be considered as fixed constants but are 
random variables whose values are deduced from the 
values of the random variables Fo and Fd by means 
of (6). Since the variables Fo and Fa are the integration 
variables of the joint probability density function in 
(5), these scale factors should be recalculated at each 
step of the numerical integration. Scale factors can 
actually be estimated in different ways. What is 
required here is a method that provides a scale factor 
such that the expectation value of each scaled struc- 
ture factor sjFcj is unbiased (sj--scale factor of the 
Fc/s with respect to the corresponding Fobs values 
Fo + cjFa ). This is necessary because the random-error 
model which is used here to derive the probability 
distribution of Fcj is based on the assumption that 
the expectation value of Fc;(H), i.e. in practice 
sjFcj(H), is equal to Fo (H)+  CjFd(H). The recalcula- 
tion of the scale factors s t as a function of the F0's 
and Fd'S during the integration of the joint probability 
function is not yet incorporated into the application 
program. In its present state the program treats each 
reflection separately, one after another. To take into 
account this recalculation, it would be necessary to 
perform simultaneously the numerical integration of 
the joint probability density function of all reflections 
selected for the calculation of the scale factors. No 
great improvement of the accuracy of the calculation 
is expected from the introduction of such a 
modification. 
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Abstract 

The structure of pentagonal Frank-Kasper phases 
can be recovered from the projection of a common 
MgCu2 cube described in a six-dimensional space. 
From the close structural relationship between the 
newly discovered icosahedral quasicrystal and the 
Frank-Kasper phases, a structure model has been 
proposed for the former. 

1. Introduction 

Penrose (1974) first pointed out that a two- 
dimensional (2D) plane can be tiled by two rhombi, 
72-108 and 36-144 ° respectively, with a fivefold sym- 
metry. Later, this was developed to the three- 
dimensional (3D) case by Mackay (1982a, b), who 
used two rhombohedra, 63.43 and 116.57 ° respec- 
tively, displaying the icosahedral 2/m35 symmetry. 
This has attracted much attention lately on account 
of the discovery of an icosahedral quasicrystal 
(Shechtman, Blech, Gratias & Cahn, 1984). 

An icosahedron has 12 vertices and six fivefold 
axes passing through its centre and vertices. The 3D 
Penrose lattice has been described by using a six-axes 
system and it was therefore called a quasilattice by 
Mackay (1982a, b). Consequently, this can also be 
described in terms of the projection of a 6D simple 
cubic lattice onto a 3D hyperplane [see, for example, 
Kramer & Neri (1984) and Elser (1986)]. If the projec- 
tion is carried out onto an incommensurate hyper- 
plane, a 3D quasilattice is recovered. 

The structure of pentagonal Frank-Kasper (FK) 
phases was known to consist mainly of icosahedra 
(Frank & Kasper, 1958, 1959) and this close relation- 
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ship between FK phases and the icosahedral phase 
has guided some investigators to obtain new icosahe- 
dral phases in Ti2Ni (Zhang, Ye & Kuo, 1985), 
Mg32(ml, Zn)49 (Ramachandrarao & Sastry, 1985) and 
V-Ni-Si (Kuo, Zhou & Li, 1987). Moreover, structure 
models of 2D and 3D quasicrystals have already been 
derived from their close relationship to the FK phases 
(Yang & Kuo, 1986). 

According to Anderson (1978), the structure of the 
pentagonal FK phases can be recovered by applying 
various symmetry operations, such as twinning, 
reflection, rotation, inversion etc., to the rhombohe- 
dral unit (60 °) of the f.c.c. MgCu2 structure and the 
ZraA13 unit. Since this 60 ° rhombohedral unit is quite 
like the acute rhombohedron (63.43 °) of the icosahe- 
dral phase, it is natural to inquire into the possibility, 
by projection of the 6D MgCu2 onto a 3D hyperplane, 
of obtaining the structure of both the pentagonal FK 
phases and the icosahedral phase. The present investi- 
gation is devoted mainly to a new description of the 
FK phases, and in the meantime a possible structure 
model for the quasicrystal is proposed. A preliminary 
report has already been published (Yang & Kuo, 
1986) and a similar study on the structure of the 
Mg32 (A1, Zn)49 icosahedral phase has also appeared 
(Henley & Elser, 1986). 

2. Projection method 

In the case of the projection of a 2D lattice onto a 
1D space (Fig. 1), Elser (1986) pointed out that when 
tan a is an irrational number an incommensurate 
structure will result. This applies only to the case 
where the direction of projection is normal to the 
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